unknown Interview Question for Senior Software Development Engineers

Country: India
Interview Type: In-Person

Comment hidden because of low score. Click to expand.
of 0 vote

Question is not clear..can you please explain more on this?

- rakhee63 June 30, 2015 | Flag Reply
Comment hidden because of low score. Click to expand.
of 0 vote

A naive approach to this problem would be to have an array of stacks and update the necessary
stacks on each folding operation. The problem is that each fold requires us to reverse half of
the stacks at each step, or, to put it another way, pop everything from half of the stacks
and push it again on the other half.

When processing the i-th fold, each stack has 2^i elements, and we would have to pop
2^i elements out of 2^N/2^(i+1) stacks and push them back into the other 2^N/2^(i+1) stacks.
So for each step we pop half of the total elements and push them again.

For an array of size M, this amounts to O(M log(M)), since there are log(M) steps, and each step
does O(M/2 + M/2) work (pop + push).

This code goes a little further and optimizes the stack merging step by doing it in O(1). To do
so, it has each stack element point to two elements - the node below and the node underneath.
These pointers are not always accurante: because we don't actually reverse the stacks when
merging, traversing a stack from top to bottom is not as easy as following pointers to the
element that comes next, since a merge operation effectively turns a stack upside down
(so the element below is now the element above, and vice versa). We just have to be careful
with this when traversing the stack by following the link that does NOT takes us to the previous
node we just came from.

Also, each stack base (the bottommost node, that never changes) in the array keeps a pointer to
the current top of the stack whose bottom is that node. This ensures that we can find the top
of a stack in O(1) given any node in the array, and merge them in O(1).

This optimization reduces the runtime down to O(M) at the cost of a little memory overhead to
store the pointers.

Note that a naive complexity analysis would argue that the runtime is still O(M log(M)), because
at each step we do at most M/2 merges and there are log(M) steps. This is wrong though: O(1)
merges amortize the total runtime to O(M/2) because the stack sizes double on each step.

So, step 1 does M/2 merges, step 2 does M/4, step 3 does M/8:

M/2 + M/4 + M/8 + M/16 + ...

Which is bounded by 2M and thus the algorithm is O(M).

Note, however, that M = 2^N, but we need to at least represent the paper elements to move them
around, so this is probably the best asymptotic complexity we can get.

struct array_node {
	int value;
	struct array_node *up;
	struct array_node *down;
	struct array_node *top;

static void merge_stacks(struct array_node *below, struct array_node *above) {
	if (below->up == NULL) {
		below->up = above;
	} else {
		assert(below->down == NULL);
		below->down = above;

	if (above->up == NULL) {
		above->up = below;
	} else {
		assert(above->down == NULL);
		above->down = below;

void fold(struct array_node arr[], const char cmds[], size_t cmds_sz) {

	size_t beg = 0;
	size_t arr_sz = 1 << cmds_sz;
	size_t len = arr_sz;

	size_t i;
	for (i = 0; i < cmds_sz; i++) {
		size_t j, k;
		for (j = beg, k = beg+arr_sz-1; j < beg+arr_sz/2; j++, k--) {
			if (cmds[i] == 'L') {
				merge_stacks(arr[k].top, arr[j].top);
				arr[k].top = &arr[j];
			} else if (cmds[i] == 'R') {
				merge_stacks(arr[j].top, arr[k].top);
				arr[j].top = &arr[k];
			} else {

		arr_sz /= 2;

		if (cmds[i] == 'L') {
			beg += arr_sz;

	assert(arr_sz == 1);

	struct array_node *curr = arr[beg].top;
	struct array_node *prev = NULL;
	struct array_node *next;

	for (i = 0; i < len; i++) {
		printf("%d ", curr->value);
		if (curr->up == NULL || curr->up == prev) {
			next = curr->down;
		} else {
			next = curr->up;
		prev = curr;
		curr = next;


int main(void) {
	printf("Enter N followed by the sequence of commands.\n");
	printf("> ");

	size_t n;
	while (scanf("%zu", &n) == 1) {
		struct array_node values[1 << n];

		size_t i;
		for (i = 0; i < (1 << n); i++) {
			values[i].value = i+1;
			values[i].top = &values[i];
			values[i].up = values[i].down = NULL;

		char cmds[n];
		for (i = 0; i < n; i++) {
			scanf(" %c", &cmds[i]);

		fold(values, cmds, n);
		printf("> ");

	return 0;

Some tests:

Enter N followed by the sequence of commands.
> 3
5 4 1 8 7 2 3 6 
> 3   
7 2 3 6 5 4 1 8 
> 3
2 7 6 3 4 5 8 1 
> 3
4 5 8 1 2 7 6 3 

Seems to be good.

- 010010.bin June 30, 2015 | Flag Reply
Comment hidden because of low score. Click to expand.
of 0 vote

Here's my code which is a simple implementation without any optimization.

vector<int> Folding(int N,string S)

	vector< vector<int> > prev,cur;
	vector<int> tmp;
	for (int i=0;i<(1<<N);i++){

	for (int t=0;t<N;t++){

		if (S[t]=='R'){
			int sz=prev.size();
			for (int i=0;i<sz/2;i++)
			for (int i=0;i<sz/2;i++)
				for (int j=prev[i].size()-1;j>=0;j--)

			int sz=prev.size();
			for (int i=sz/2;i<sz;i++)
			for (int i=0;i<sz/2;i++)
				for (int j=prev[i].size()-1;j>=0;j--)


	return cur[0];

- MehrdadAP July 02, 2015 | Flag Reply

Add a Comment

Writing Code? Surround your code with {{{ and }}} to preserve whitespace.


is a comprehensive book on getting a job at a top tech company, while focuses on dev interviews and does this for PMs.

Learn More


CareerCup's interview videos give you a real-life look at technical interviews. In these unscripted videos, watch how other candidates handle tough questions and how the interviewer thinks about their performance.

Learn More

Resume Review

Most engineers make critical mistakes on their resumes -- we can fix your resume with our custom resume review service. And, we use fellow engineers as our resume reviewers, so you can be sure that we "get" what you're saying.

Learn More

Mock Interviews

Our Mock Interviews will be conducted "in character" just like a real interview, and can focus on whatever topics you want. All our interviewers have worked for Microsoft, Google or Amazon, you know you'll get a true-to-life experience.

Learn More